
Nama : Irfan Hidayatulah Putra

NIM : 20220140142

Kelas : B

let player;

let bullets = [];

let enemies = [];

let spawnTimer = 0;

let score = 0;

let lives = 3;

let gameState = 'menu'; // 'menu', 'playing', 'gameover'

// Sound variables

let shootSound; // external mp3 for shooting

let gameOverSound; // external wav for game over

// Auto-fire

let autoFire = false;

let autoFireBtn; // p5 button element

// Difficulty

let difficulties = {

 'Easy': { lives: 5, spawnRange: [50, 100], enemySpeedMul: 0.8, cooldownMax: 16 },

 'Normal': { lives: 3, spawnRange: [30, 80], enemySpeedMul: 1.0, cooldownMax: 12 },

 'Hard': { lives: 2, spawnRange: [15, 50], enemySpeedMul: 1.4, cooldownMax: 8 }

};

let difficultyNames = ['Easy', 'Normal', 'Hard'];

let selectedDifficulty = 'Normal';

// menu box layout (calculated in setup)

let diffBox = {

 x: 0, y: 0, w: 140, h: 48, spacing: 20

};

function preload() {

 soundFormats('mp3', 'wav');

 shootSound = loadSound('mixkit-game-gun-shot-1662.mp3',

 () => {},

 (err) => { console.warn('Gagal memuat suara tembakan:', err); }

);

 gameOverSound = loadSound('mixkit-explosion-hit-1704.wav',

 () => {},

 (err) => { console.warn('Gagal memuat suara gameover:', err); }

);

}

function setup() {

 // create canvas and UI

 let cnv = createCanvas(800, 600);

 cnv.parent(document.body);

 textAlign(CENTER, CENTER);

 // position difficulty boxes horizontally centered

 let totalW = difficultyNames.length * diffBox.w + (difficultyNames.length - 1) * diffBox.spacing;

 diffBox.x = width / 2 - totalW / 2;

 diffBox.y = height / 2 + 10;

 player = new Player(width / 2, height - 40);

 spawnTimer = 20;

 // Create Auto-Fire toggle button

 autoFireBtn = createButton('Auto-Fire: OFF');

 autoFireBtn.position(width - 130, 8);

 autoFireBtn.style('padding', '6px 8px');

 autoFireBtn.style('font-family', 'sans-serif');

 autoFireBtn.mousePressed(toggleAutoFire);

 autoFireBtn.attribute('aria-label', 'Toggle auto fire');

 // Optional: show hint about key shortcut

 let hint = createP("Tekan 'F' untuk toggle Auto-Fire | Gunakan ← → untuk pilih difficulty, ENTER untuk mulai");

 hint.position(8, height + 8);

 hint.style('margin', '0px');

 hint.style('font-family', 'sans-serif');

 hint.style('font-size', '12px');

 // apply initial difficulty (so UI shows correct values)

 applyDifficultySettings(selectedDifficulty);

}

function draw() {

 background(30);

 if (gameState === 'menu') {

 drawMenu();

 return;

 }

 if (gameState === 'playing') {

 // --- INPUT handled per-frame so movement + shooting can occur simultaneously ---

 handleInput();

 // If autoFire is ON, request shoot every frame (player.shoot() respects cooldown)

 if (autoFire) {

 player.shoot();

 }

 // spawn enemies (use difficulty spawn range, scale with score)

 if (spawnTimer <= 0) {

 enemies.push(new Enemy(random(20, width - 20), -20));

 spawnTimer = getNextSpawnTimer();

 } else {

 spawnTimer--;

 }

 // update player

 player.update();

 player.show();

 // update bullets

 for (let i = bullets.length - 1; i >= 0; i--) {

 bullets[i].update();

 bullets[i].show();

 if (bullets[i].offscreen()) bullets.splice(i, 1);

 }

 // update enemies

 for (let i = enemies.length - 1; i >= 0; i--) {

 enemies[i].update();

 enemies[i].show();

 // enemy hits bottom -> lose life

 if (enemies[i].y - enemies[i].h/2 > height) {

 enemies.splice(i, 1);

 lives--;

 if (lives <= 0) {

 triggerGameOver();

 }

 continue;

 }

 // enemy collides with player

 if (enemies[i].hitsPlayer(player)) {

 enemies.splice(i, 1);

 lives--;

 if (lives <= 0) {

 triggerGameOver();

 }

 continue;

 }

 // bullet collisions

 for (let j = bullets.length - 1; j >= 0; j--) {

 if (enemies[i] && bullets[j] && enemies[i].hitsBullet(bullets[j])) {

 playExplosion(enemies[i].x, enemies[i].y);

 enemies.splice(i, 1);

 bullets.splice(j, 1);

 score += 10;

 break;

 }

 }

 }

 // HUD

 drawHUD();

 } else if (gameState === 'gameover') {

 drawGameOver();

 }

}

function getNextSpawnTimer() {

 // calculates next spawn timer based on selected difficulty and score pressure

 let cfg = difficulties[selectedDifficulty];

 let minV = cfg.spawnRange[0];

 let maxV = cfg.spawnRange[1];

 // scale down spawn times slowly as score increases

 let scaleDown = floor(score / 50);

 let minAdj = max(6, minV - scaleDown);

 let maxAdj = max(minAdj + 6, maxV - floor(score / 30));

 return int(random(minAdj, maxAdj));

}

function applyDifficultySettings(name) {

 // apply difficulty settings to global gameplay variables

 let cfg = difficulties[name];

 if (!cfg) cfg = difficulties['Normal'];

 lives = cfg.lives;

 // set player's cooldown max (so auto-fire / manual respect difficulty)

 if (player) player.cooldownMax = cfg.cooldownMax;

 // spawnTimer initial

 spawnTimer = getNextSpawnTimer();

}

function handleInput() {

 // movement

 if (keyIsDown(LEFT_ARROW) || keyIsDown(65)) { // LEFT or A

 player.setDir(-1);

 } else if (keyIsDown(RIGHT_ARROW) || keyIsDown(68)) { // RIGHT or D

 player.setDir(1);

 } else {

 player.setDir(0);

 }

 // shooting: tahan space untuk menembak sesuai cooldown

 if (keyIsDown(32)) { // SPACE

 player.shoot();

 }

}

function drawMenu() {

 fill(255);

 textSize(48);

 text('Space Shoot', width / 2, height / 2 - 100);

 textSize(16);

 fill(200);

 text('Pilih tingkat kesulitan: (klik kotak / gunakan ← → lalu ENTER)', width / 2, height / 2 - 60);

 // draw difficulty boxes

 for (let i = 0; i < difficultyNames.length; i++) {

 let name = difficultyNames[i];

 let x = diffBox.x + i * (diffBox.w + diffBox.spacing);

 let y = diffBox.y;

 // box background

 if (name === selectedDifficulty) {

 fill(255, 204, 0);

 stroke(255);

 strokeWeight(2);

 } else {

 fill(60);

 noStroke();

 }

 rectMode(CORNER);

 rect(x, y, diffBox.w, diffBox.h, 8);

 // label

 noStroke();

 fill(0);

 if (name === selectedDifficulty) {

 fill(20);

 } else {

 fill(220);

 }

 textSize(18);

 text(name, x + diffBox.w / 2, y + diffBox.h / 2 - 6);

 // small details (lives / speed)

 let cfg = difficulties[name];

 textSize(12);

 fill(name === selectedDifficulty ? 20 : 200);

 text(`Lives: ${cfg.lives}`, x + diffBox.w / 2, y + diffBox.h / 2 + 10);

 }

 // show controls hint

 fill(200);

 textSize(14);

 text('A / ← : kiri | D / → : kanan | SPACE : tembak', width / 2, diffBox.y + diffBox.h + 36);

 text("Tekan ENTER atau klik area kosong untuk mulai dengan pilihan saat ini.", width / 2, diffBox.y + diffBox.h + 56);

}

function drawHUD() {

 fill(255);

 textSize(14);

 textAlign(LEFT, TOP);

 text('Score: ' + score, 8, 8);

 text('Lives: ' + lives, 8, 28);

 // show difficulty and auto-fire status top-right

 textAlign(RIGHT, TOP);

 let level = (1 + floor(score / 100));

 text('Level: ' + level, width - 8, 8);

 // small indicator below Level

 textSize(12);

 textAlign(RIGHT, TOP);

 text('Diff: ' + selectedDifficulty, width - 8, 28);

 text('Auto-Fire: ' + (autoFire ? 'ON' : 'OFF'), width - 8, 46);

 textAlign(CENTER, CENTER);

}

function drawGameOver() {

 fill(255, 80, 80);

 textSize(64);

 text('GAME OVER', width / 2, height / 2 - 60);

 textSize(24);

 fill(255);

 text('Score: ' + score, width / 2, height / 2);

 textSize(16);

 text('Tekan R untuk main lagi', width / 2, height / 2 + 40);

 text('Tekan M untuk kembali ke menu', width / 2, height / 2 + 64);

}

// Start / restart and mouse handling

function keyPressed() {

 if (gameState === 'menu') {

 // change selection by arrow keys

 if (keyCode === LEFT_ARROW) {

 changeSelection(-1);

 } else if (keyCode === RIGHT_ARROW) {

 changeSelection(1);

 } else if (keyCode === ENTER) {

 // start game with selected difficulty

 if (typeof userStartAudio === 'function') userStartAudio();

 startGame();

 }

 } else if (gameState === 'playing') {

 // F toggles auto-fire

 if (key === 'f' || key === 'F') {

 toggleAutoFire();

 }

 // R handled below for gameover but allow restart quickly

 if (key === 'r' || key === 'R') {

 restartGame();

 }

 } else if (gameState === 'gameover') {

 if (key === 'r' || key === 'R') {

 restartGame();

 }

 if (key === 'm' || key === 'M') {

 // back to menu

 gameState = 'menu';

 // reapply default selected difficulty UI

 applyDifficultySettings(selectedDifficulty);

 }

 // still allow toggling auto-fire from gameover screen

 if (key === 'f' || key === 'F') toggleAutoFire();

 }

}

function changeSelection(dir) {

 let idx = difficultyNames.indexOf(selectedDifficulty);

 idx = (idx + dir + difficultyNames.length) % difficultyNames.length;

 selectedDifficulty = difficultyNames[idx];

 // update UI/preview values

 applyDifficultySettings(selectedDifficulty);

}

function mousePressed() {

 if (gameState === 'menu') {

 // check if clicked on any difficulty box

 if (checkMenuClick(mouseX, mouseY)) {

 // click handled (selection changed) - do not start

 return;

 }

 // otherwise, start the game (click on empty area)

 if (typeof userStartAudio === 'function') userStartAudio();

 startGame();

 } else if (gameState === 'playing') {

 // mouse click shoots (still works while moving)

 player.shoot();

 } else if (gameState === 'gameover') {

 // click to restart quickly

 restartGame();

 }

}

function checkMenuClick(mx, my) {

 for (let i = 0; i < difficultyNames.length; i++) {

 let x = diffBox.x + i * (diffBox.w + diffBox.spacing);

 let y = diffBox.y;

 if (mx >= x && mx <= x + diffBox.w && my >= y && my <= y + diffBox.h) {

 selectedDifficulty = difficultyNames[i];

 applyDifficultySettings(selectedDifficulty);

 return true;

 }

 }

 return false;

}

function startGame() {

 score = 0;

 bullets = [];

 enemies = [];

 // set initial lives and cooldown based on selected difficulty

 let cfg = difficulties[selectedDifficulty];

 lives = cfg.lives;

 if (player) player.cooldownMax = cfg.cooldownMax;

 spawnTimer = getNextSpawnTimer();

 gameState = 'playing';

}

function restartGame() {

 startGame();

 gameState = 'playing';

}

// trigger game over once and play sound

function triggerGameOver() {

 if (gameState !== 'gameover') {

 if (typeof userStartAudio === 'function') {

 try { userStartAudio(); } catch (e) {}

 }

 gameState = 'gameover';

 // play game over sound once

 if (gameOverSound && gameOverSound.isLoaded()) {

 try {

 gameOverSound.setVolume(1.0);

 gameOverSound.play();

 } catch (e) {}

 }

 }

}

// Toggle function for Auto-Fire button and shortcut

function toggleAutoFire() {

 autoFire = !autoFire;

 if (autoFireBtn) {

 autoFireBtn.html('Auto-Fire: ' + (autoFire ? 'ON' : 'OFF'));

 // small visual cue

 if (autoFire) {

 autoFireBtn.style('background-color', '#ffdd57');

 } else {

 autoFireBtn.style('background-color', '');

 }

 }

}

// --- Classes ---

class Player {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 this.w = 48;

 this.h = 18;

 this.speed = 6;

 this.dir = 0;

 this.cooldown = 0; // frames until next shot

 this.cooldownMax = difficulties[selectedDifficulty].cooldownMax; // set by difficulty

 }

 setDir(d) {

 this.dir = d;

 }

 update() {

 this.x += this.dir * this.speed;

 this.x = constrain(this.x, this.w / 2, width - this.w / 2);

 if (this.cooldown > 0) this.cooldown--;

 }

 show() {

 push();

 translate(this.x, this.y);

 noStroke();

 fill(100, 200, 255);

 rectMode(CENTER);

 rect(0, 0, this.w, this.h, 6);

 fill(20, 80, 140);

 triangle(-12, -2, 12, -2, 0, -12);

 pop();

 }

 shoot() {

 if (this.cooldown === 0) {

 bullets.push(new Bullet(this.x, this.y - this.h / 2 - 6));

 if (shootSound && shootSound.isLoaded()) {

 try {

 let rate = random(0.95, 1.05);

 shootSound.rate(rate);

 shootSound.setVolume(0.8);

 shootSound.play();

 } catch (e) {

 try { shootSound.play(); } catch (e2) {}

 }

 }

 this.cooldown = this.cooldownMax;

 }

 }

}

class Bullet {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 this.r = 5;

 this.speed = 10;

 }

 update() {

 this.y -= this.speed;

 }

 show() {

 noStroke();

 fill(255, 200, 50);

 circle(this.x, this.y, this.r * 2);

 }

 offscreen() {

 return this.y + this.r < 0;

 }

}

class Enemy {

 constructor(x, y) {

 this.baseX = x;

 this.x = x;

 this.y = y;

 this.w = random(28, 48);

 this.h = this.w * 0.6;

 // speed scales with score and difficulty

 let cfg = difficulties[selectedDifficulty];

 this.speed = random((1 + score / 200) * cfg.enemySpeedMul, (2 + score / 120) * cfg.enemySpeedMul);

 this.osc = random(0.01, 0.05);

 this.angle = random(TWO_PI);

 }

 update() {

 this.y += this.speed;

 this.angle += this.osc;

 this.x = this.baseX + sin(this.angle) * 36;

 }

 show() {

 push();

 translate(this.x, this.y);

 noStroke();

 fill(200, 100, 120);

 rectMode(CENTER);

 rect(0, 0, this.w, this.h, 8);

 fill(180, 50, 80);

 triangle(-this.w * 0.4, this.h * 0.2, this.w * 0.4, this.h * 0.2, 0, this.h * 0.6);

 pop();

 }

 hitsBullet(b) {

 let dx = abs(b.x - this.x);

 let dy = abs(b.y - this.y);

 if (dx > (this.w / 2 + b.r)) return false;

 if (dy > (this.h / 2 + b.r)) return false;

 return true;

 }

 hitsPlayer(p) {

 return !(p.x + p.w/2 < this.x - this.w/2 ||

 p.x - p.w/2 > this.x + this.w/2 ||

 p.y + p.h/2 < this.y - this.h/2 ||

 p.y - p.h/2 > this.y + this.h/2);

 }

}

// simple explosion synth for enemy destruction

function playExplosion(x, y) {

 try {

 let osc = new p5.Oscillator('sine');

 let env = new p5.Envelope();

 env.setADSR(0.001, 0.05, 0.2, 0.1);

 env.setRange(0.9, 0);

 let baseFreq = random(120, 600);

 osc.freq(baseFreq);

 osc.amp(0);

 osc.start();

 osc.freq(baseFreq * random(0.8, 1.2));

 env.play(osc);

 setTimeout(() => { try { osc.stop(); } catch (e) {} }, 220);

 } catch (e) {}

}

